Punjab University
Journal of Mathematics (ISSN 1016-2526)
Vol. 49(1)(2017) pp. 1-12

Certain Characterization of m-Polar Fuzzy Graphs by Level Graphs

Muhammad Akram
Department of Mathematics,
University of the Punjab, New Campus, Lahore, Pakistan, Email: makrammath@yahoo.com, m.akram@pucit.edu.pk
Gulfam Shahzadi
Department of Mathematics, University of the Punjab, New Campus, Lahore, Pakistan, Email: gulfamshahzadi22@gmail.com

Received: 18 September, 2016 / Accepted: 04 November, 2016 / Published online: 30 November, 2016

Abstract

Zadeh introduced the concept of fuzzy sets as a mathematical tool to deal with uncertainty, imprecision and vagueness. Since then, many higher order fuzzy sets, including intuitionistic fuzzy sets, bipolar fuzzy sets and m-polar fuzzy set, have been reported in literature to solve many real life problems, involving ambiguity and uncertainty. In this paper, we present certain characterization of m-polar fuzzy graphs by level graphs.

AMS (MOS) Subject Classification Codes: 35S29, 40S70, 25 U09
Key Words: Level graphs, m-polar fuzzy graphs, Characterizations.

1. Introduction

Graph theory is a enjoyable playground for the research of proof techniques in discrete mathematics. There are many applications of graph theory in different fields. The world of theoretical physics discovered graph theory for its own purposes. In the study of statistical mechanics, the points represent molecules and two adjacent points indicate nearest neighbor interaction of some physical kind, like magnetic interaction or repulsion. The study of Markov chains in probability theory involves directed graphs in the sense that events are given by points and a directed line from one point to another shows a positive probability of direct succession of these two events. Job assignments problem is solved by bipartite graphs.
In 1994, Zhang [19] initiated the idea of bipolar fuzzy sets, which is a generalization of fuzzy set [17]. The membership degree range in a bipolar fuzzy set is $[-1,1]$. In a bipolar fuzzy set, the membership degree 0 of an element means that the element is irrelevant to the corresponding property, the membership degree $(0,1]$ of an element indicates that the element somewhat satisfies the property, and the membership degree $[-1,0)$ of an element indicates that the element somewhat satisfies the
implicit counter-property. The idea of m-polar fuzzy set which is an extension of a bipolar fuzzy set, studied by Chen et al. [9] and exposed that 2 -polar and bipolar fuzzy set are cryptomorphic mathematical notions. The background of this concept is that "multipolar information" (not like the bipolar information which give two-valued logic) arise because information for a natural world are frequently from n factors ($n \geq 2$). The statement 'Pakistan is a good country', consider as an example. The truth value of this statement may not a real number in $[0,1]$. Being good country may have several components: good in public transport system, good in political awareness, good in medical facilities, etc. The each component may be a real number in $[0,1]$. If n is the number of such components under consideration, then the truth value of fuzzy statement is a n-tuple of real numbers in $[0,1]$, that is, an element of $[0,1]^{n}$. In 1973, Kauffmann [12] illustrated the notion of fuzzy graphs based on Zadeh's fuzzy relations [18]. The fuzzy graphs structure was described by Rosenfeld [16]. Later, Bhattacharya [8] gave some remarks on fuzzy graphs. 1994, Mordeson and ChangShyh [14] defined some operations on fuzzy graphs. In 2011, Akram introduced the notion of bipolar fuzzy graphs in [1]. Dudek and Talebi [10] described operations on level graphs of bipolar fuzzy graphs. Recently, Akram et al. [3-7] has discussed several new concepts, including m-polar fuzzy graphs, certain metrics in m-polar fuzzy graphs, certain types of edge m-polar fuzzy graphs and m-polar fuzzy hypergraphs. In this research paper, we present characterization of m-polar fuzzy graphs by level graphs.

2. Characterization of m-POLAR FUZZY GRaphs By Level graphs

Definition 2.1. [9] An m-polar fuzzy set in a universe Y is a function $C: Y \rightarrow$ $[0,1]^{m}$. The degree of each element $a \in Y$ is written as $C(a)=\left(P_{1} o C(a), P_{2} o C(a)\right.$ $\left., \cdots, P_{m} o C(a)\right)$, where $P_{k} o C:[0,1]^{m} \rightarrow[0,1]$ is the k th projection mapping.
Note that $[0,1]^{m}$ (m-th power of $[0,1]$) is considered as a poset with the point-wise order \leq, where m is an arbitrary ordinal number (we make an appointment that $m=$ $\{n \mid n<m\}$ when $m>0), \leq$ is defined by $a \leq b \Leftrightarrow P_{k}(a) \leq P_{k}(b)$ for each $k \in m$ $\left(a, b \in[0,1]^{m}\right)$, and $P_{k}:[0,1]^{m} \rightarrow[0,1]$ is the k-th projection mapping $(k \in m)$. $\mathbf{1}=(1,1, \cdots, 1)$ is the greatest value and $\mathbf{0}=(0,0, \cdots, 0)$ is the smallest value in $[0,1]^{m}$.

Definition 2.2. [4] Let C be an m-polar fuzzy subset of a non-empty Y. An m-polar fuzzy relation on C is an m-polar fuzzy subset D of $Y \times Y$ defined by the mapping $D: Y \times Y \rightarrow[0,1]^{m}$ such that for all $a, b \in Y$

$$
P_{k} o D(a b) \leq \inf \left\{P_{k} o C(a), P_{k} o C(b)\right\}
$$

$1 \leq k \leq m$, where $P_{k} o C(a)$ denotes the k-th degree of membership of a vertex a and $P_{k} o D(a b)$ denotes the k-th degree of membership of the edge $a b$.

Definition 2.3. [4, 9] An m-polar fuzzy graph is a pair $G=(C, D)$, where $C: Y \rightarrow$ $[0,1]^{m}$ is an m-polar fuzzy set in Y and $D: Y \times Y \rightarrow[0,1]^{m}$ is an m-polar fuzzy relation on Y such that

$$
P_{k} o D(a b) \leq \inf \left\{P_{k} o C(a), P_{k} o C(b)\right\}
$$

$1 \leq k \leq m$, for all $a, b \in Y$ and $P_{k} o D(a b)=0$ for all $a b \in Y \times Y-F$ for all $k=1,2, \cdots, m$. C is called the m-polar fuzzy vertex set of G and D is called the m-polar fuzzy edge set of G, respectively.

We now define t-level set on Y and $F \subseteq Y \times Y$.
Definition 2.4. Let $C: Y \rightarrow[0,1]^{m}$ be an m-polar fuzzy set on Y. The set

$$
C_{t}=\left\{a \in Y \mid P_{k} o C(a) \geq \alpha_{k}, 1 \leq k \leq m\right\}
$$

where $t \in[0,1]^{m}$ and $t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$, is called the t-level set of C. Let $D: Y \times Y \rightarrow[0,1]^{m}$ be an m-polar fuzzy relation on Y. The set

$$
D_{t}=\left\{a b \in Y \times Y \mid P_{k} o D(a b) \geq \alpha_{k}, 1 \leq k \leq m\right\}
$$

where $t \in[0,1]^{m}$ and $t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ is called t-level set of $D . G_{t}=\left(C_{t}, D_{t}\right)$ is called t-level graph.

Example 2.5. Consider a 3-polar fuzzy graph on $Y=\{s, t, u, v\}$.

Figure 1. 3-polar fuzzy graph $G=(C, D)$

Take $t=(0.6,0.5,0.4)$. It is easy to see that $C_{(0.6,0.5,0.4)}=\{s, t, u\}, D_{(0.6,0.5,0.4)}=$ $\{s t, s u, t u\}$. Clearly, the $(0.6,0.5,0.4)$-level graph $=G_{(0.6,0.5,0.4)}$ is a subgraph of crisp graph $G^{*}=(Y, F)$.

We formulate a proposition.
Proposition 2.6. The level graph $G_{t}=\left(C_{t}, D_{t}\right)$ is a crisp graph.
Theorem 2.7. G is an m-polar fuzzy graph if and only if $G_{t}=\left(C_{t}, D_{t}\right)$ is a crisp graph for each $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$.
Proof. For every $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Take $a b \in D_{t}$. Then $P_{k} o D(a b) \geq$ $\alpha_{k}, 1 \leq k \leq m$. Since G is an m-polar fuzzy graph, it follows that

$$
\alpha_{k} \leq P_{k} o D(a b) \leq \inf \left\{P_{k} o C(a), P_{k} o C(b)\right\}
$$

This shows that $\alpha_{k} \leq P_{k} o C(a), \alpha_{k} \leq P_{k} o C(b)$, for $k=1,2, \cdots, m$, that is, $a, b \in$ C_{t}. Therefore, $G_{t}=\left(C_{t}, D_{t}\right)$ is a graph for each $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Conversely, let $G_{t}=\left(C_{t}, D_{t}\right)$ be a graph for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. For every $a b \in Y \times Y$, let $P_{k} o D(a b)=\alpha_{k}, 1 \leq k \leq m$. Then $a b \in D_{t}$. Since $G_{t}=\left(C_{t}, D_{t}\right)$ is a graph, we have $a, b \in C_{t}$; hence $P_{k} o C(a) \geq \alpha_{k}, P_{k} o C(b) \geq \alpha_{k}$, $1 \leq k \leq m$.

$$
P_{k} o D(a b)=\alpha_{k} \leq \inf \left\{P_{k} o C(a), P_{k} o C(b)\right\}
$$

Thus, G is an m-polar fuzzy graph.
Definition 2.8. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be m-polar fuzzy graphs of $G_{1}^{*}=\left(Y_{1}, F_{1}\right)$ and $G_{2}^{*}=\left(Y_{2}, F_{2}\right)$, respectively. The Cartesian product $G_{1} \times G_{2}$ is the pair (C, D) of m-polar fuzzy sets defined on the Cartesian product $G_{1}^{*} \times G_{2}^{*}$ such that
(i) $P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)$ for all $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$,
(ii) $P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right.$ for all $a \in Y_{1}$ and for all $a_{2} b_{2} \in F_{2}$,
(iii) $P_{k} o D\left(\left(a_{1}, c\right)\left(b_{1}, c\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}(c)\right)$ for all $c \in Y_{2}$ and for all $a_{1} b_{1} \in F_{1}$.

Theorem 2.9. Let $G_{1}=\left(C_{1}, D_{1}\right)$ and $G_{2}=\left(C_{2}, D_{2}\right)$ be m-polar fuzzy graphs of $G_{1}^{*}=\left(Y_{1}, F_{1}\right)$ and $G_{2}^{*}=\left(Y_{2}, F_{2}\right)$, respectively. Then $G=(C, D)$ is the Cartesian product of G_{1} and G_{2} if and only if for each $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ the t-level graph G_{t} is the Cartesian product of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$.
Proof. For each $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$, if $(a, b) \in C_{t}$, then

$$
\inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right)=P_{k} o C(a, b) \geq \alpha_{k}
$$

$1 \leq k \leq m$, so $a \in\left(C_{1}\right)_{(t)}$ and $b \in\left(C_{2}\right)_{(t)}$, that is, $(a, b) \in\left(C_{1}\right)_{(t)} \times\left(C_{2}\right)_{(t)}$. Therefore, $C_{t} \subseteq\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t}$. Let $(a, b) \in\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t}$, then $a \in\left(C_{1}\right)_{t}$ and $b \in\left(C_{2}\right)_{t}$. It follows that $\inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right) \geq \alpha_{k}, 1 \leq k \leq m$. Since (C, D) is the Cartesian product of G_{1} and $G_{2}, P_{k} o C(a, b) \geq \alpha_{k}$, that is, $(a, b) \in C_{t}$. Therefore, $\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t} \subseteq C_{t}$ and so $\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t}=C_{t}$. We now prove $D_{t}=F$, where F is the edge set of the Cartesian product $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$ for each $t \in[0,1]^{m}$, $t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Let $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t}$. Then, $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right) \geq$ $\alpha_{k}, 1 \leq k \leq m$. Since (C, D) is the Cartesian product of G_{1} and G_{2}, one of the following cases hold:
(i) $a_{1}=b_{1}$ and $a_{2} b_{2} \in F_{2}$.
(ii) $a_{2}=b_{2}$ and $a_{1} b_{1} \in F_{1}$.

For the case (i), we have

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) \geq \alpha_{k}
$$

so $P_{k} o C_{1}\left(a_{1}\right) \geq \alpha_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \alpha_{k}$. It follows that $a_{1}=b_{1} \in\left(C_{1}\right)_{t}, a_{2} b_{2} \in$ $\left(D_{2}\right)_{t}$, that is, $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F$. Similarly, for the case (ii), we conclude that $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F$. Therefore, $D_{t} \subseteq F$. For every $\left(a, a_{2}\right)\left(a, b_{2}\right) \in F, P_{k} o C_{1}(a) \geq$ $\alpha_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \alpha_{k}, 1 \leq k \leq m$. Since (C, D) is the Cartesian product of G_{1} and G_{2}, we have

$$
P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) \geq \alpha_{k}
$$

$1 \leq k \leq m$. Therefore $\left(a, a_{2}\right)\left(a, b_{2}\right) \in D_{t}$. Similarly, for every $\left(a_{1}, c\right)\left(b_{1}, c\right) \in F$, we have $\left(a_{1}, c\right)\left(b_{1}, c\right) \in D_{t}$. Therefore, $F \subseteq D_{t}$, and so $D_{t}=F$.
Conversely, suppose that $G_{t}=\left(C_{t}, D_{t}\right)$ is the Cartesian product of $\left(G_{1}\right)_{t}=$
$\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(G_{2}\right)_{t}=\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Let $\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)=\alpha_{k}, 1 \leq k \leq m$ for some $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$. Then $a_{1} \in\left(C_{1}\right)_{t}$ and $a_{2} \in\left(C_{2}\right)_{t}$. By hypothesis, $\left(a_{1}, a_{2}\right) \in C_{t}$, hence

$$
P_{k} o C\left(a_{1}, a_{2}\right) \geq \alpha_{k}=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)
$$

Take $P_{k} o C\left(a_{1}, a_{2}\right)=\beta_{k}, 1 \leq k \leq m$, then $\left(a_{1}, a_{2}\right) \in C_{t^{\prime}}$ where $t^{\prime} \in[0,1]^{m}$, $t^{\prime}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)$. Since $\left(C_{t^{\prime}}, D_{t^{\prime}}\right)$ is the Cartesian product of $\left(\left(C_{1}\right)_{t^{\prime}},\left(D_{1}\right)_{t^{\prime}}\right)$ and $\left(\left(C_{2}\right)_{t^{\prime}},\left(D_{2}\right)_{t^{\prime}}\right)$, then $a_{1} \in\left(C_{1}\right)_{t^{\prime}}$ and $a_{2} \in\left(C_{2}\right)_{t^{\prime}}$. Hence,

$$
P_{k} o C_{1}\left(a_{1}\right) \geq \beta_{k}, P_{k} o C_{2}\left(a_{2}\right) \geq \beta_{k}
$$

It follows that

$$
\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right) \geq P_{k} o C\left(a_{1}, a_{2}\right)
$$

Therefore,

$$
P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right) \text { for all }\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right) \in \mathrm{Y}_{1} \times \mathrm{Y}_{2}
$$

Similarly, for every $a \in Y_{1}$ and every $a_{2} b_{2} \in F_{2}$, let

$$
\begin{gathered}
\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)=\alpha_{k} \\
P_{k} o D\left(\left(a, a_{1}\right)\left(a, b_{2}\right)\right)=\beta_{k}, 1 \leq k \leq m
\end{gathered}
$$

Then we have $P_{k} o C_{1}(a) \geq \alpha_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \alpha_{k}$, that is, $a \in\left(C_{1}\right)_{t}, a_{2} b_{2} \in$ $\left(D_{2}\right)_{t}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ and $\left(a, a_{2}\right)\left(a, b_{2}\right) \in D_{t^{\prime}}, t^{\prime}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)$. Since $\left(C_{t}, D_{t}\right)$ (resp. $\left.\left(\mathrm{C}_{\mathrm{t}^{\prime}}, \mathrm{D}_{\mathrm{t}^{\prime}}\right)\right)$ is the Cartesian product of $\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$ (resp. $\left.\left(\mathrm{C}_{1}\right)_{\mathrm{t}^{\prime}},\left(\mathrm{D}_{1}\right)_{\mathrm{t}^{\prime}}\right)$ and $\left(\left(C_{2}\right)_{t^{\prime}},\left(D_{2}\right)_{t^{\prime}}\right)$ we have $\left(a, a_{2}\right)\left(a, b_{2}\right) \in D_{t}, a \in\left(C_{1}\right)_{t^{\prime}}$ and $a_{2} b_{2} \in\left(D_{2}\right)_{t^{\prime}}$, which implies $P_{k} o C_{1}(a) \geq \beta_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \beta_{k}$. It follows that

$$
\begin{aligned}
& P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right) \geq \alpha_{k}=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right), \\
& \inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) \geq \beta_{k}=P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right) .
\end{aligned}
$$

Therefore,

$$
P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)
$$

for all $a \in Y_{1}$ and $a_{2} b_{2} \in F_{2}$. Similarly, we can show that

$$
P_{k} o D\left(\left(a_{1}, c\right)\left(b_{1}, c\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}(c)\right)
$$

for all $c \in Y_{2}$ and $a_{1} b_{1} \in F_{1}$. This completes the proof.
Definition 2.10. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. The composition $G_{1}\left[G_{2}\right]$ is the pair (C, D) of m-polar fuzzy sets defined on the composition $G_{1}^{*}\left[G_{2}^{*}\right]$ such that
(i) $P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)$ for all $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$,
(ii) $P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a \in Y_{1}$ and for all $a_{2} b_{2} \in F_{2}$,
(iii) $P_{k} o D\left(\left(a_{1}, c\right)\left(b_{1}, c\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}(c)\right)$ for all $c \in Y_{2}$ and for all $a_{1} b_{1} \in F_{1}$,
(iv) $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}\left(a_{2}\right), P_{k} o C_{2}\left(b_{2}\right)\right)$ for all $a_{2}, b_{2} \in Y_{2}$, where $a_{2} \neq b_{2}$ and for all $a_{1} b_{1} \in F_{1}$.

Theorem 2.11. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. Then G is the composition of G_{1} and G_{2} if and only if for each $t \in[0,1]^{m}, t=$ $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ the t-level graph G_{t} is the composition of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$.

Proof. By the definition of $G_{1}\left[G_{2}\right]$ and in the same way as in the proof of Theorem 2.9, we have $C_{t}=\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t}$. We prove $D_{t}=F$, where F is the edge set of the composition $\left(G_{1}\right)_{t}\left[\left(G_{2}\right)_{t}\right]$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Let $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t}$. Then $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right) \geq \alpha_{k}, 1 \leq k \leq m$. Since G is the composition $G_{1}\left[G_{2}\right]$, one of the following cases hold:
(i) $a_{1}=b_{1}$ and $a_{2} b_{2} \in F_{2}$.
(ii) $a_{2}=b_{2}$ and $a_{1} b_{1} \in F_{1}$.
(iii) $a_{2} \neq b_{2}$ and $a_{1} b_{1} \in F_{1}$.

For the cases (i) and (ii), similarly as in the cases (i) and (ii) in the proof of Theorem 2.9, we obtain $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F$. For the case (iii), we have

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}\left(a_{2}\right), P_{k} o C_{2}\left(b_{2}\right)\right) \geq \alpha_{k}
$$

Thus, $P_{k} o C_{2}\left(a_{2}\right) \geq \alpha_{k}, P_{k} o C_{2}\left(b_{2}\right) \geq \alpha_{k}, P_{k} o D_{1}\left(a_{1} b_{1}\right) \geq \alpha_{k}, 1 \leq k \leq m$. It follows that $a_{2}, b_{2} \in\left(C_{2}\right)_{t}$ and $a_{1} b_{1} \in\left(D_{1}\right)_{t}$, that is, $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F$. Therefore, $D_{t} \subseteq F$. For every $\left(a, a_{2}\right)\left(a, b_{2}\right) \in F, P_{k} o C_{1}(a) \geq \alpha_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \alpha_{k}, 1 \leq$ $k \leq m$. Since $G=(C, D)$ is the composition $G_{1}\left[G_{2}\right]$, we have

$$
P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) \geq \alpha_{k}
$$

$1 \leq k \leq m$. Therefore, $\left(a, a_{2}\right)\left(a, b_{2}\right) \in D_{t}$. Similarly, for every $\left(a_{1}, c\right)\left(b_{1}, c\right) \in F$, we have $\left(a_{1}, c\right)\left(b_{1}, c\right) \in D_{t}$. For every $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F$ where $a_{2} \neq b_{2}, a_{1} \neq b_{1}$, $P_{k} o D_{1}\left(a_{1} b_{1}\right) \geq \alpha_{k}, P_{k} o C_{2}\left(a_{2}\right) \geq \alpha_{k}, P_{k} o C_{2}\left(b_{2}\right) \geq \alpha_{k}, 1 \leq k \leq m$. Since G is the composition $G_{1}\left[G_{2}\right]$, we have

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}\left(a_{2}\right), P_{k} o C_{2}\left(b_{2}\right)\right) \geq \alpha_{k}
$$

$1 \leq k \leq m$. Thus, $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t}$. Therefore, $F \subseteq D_{t}$, and so $F=D_{t}$.
Conversely, suppose that $G_{t}=\left(C_{t}, D_{t}\right)$, where $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ is the composition of $\left(G_{1}\right)_{t}=\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(G_{2}\right)_{t}=\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$. By the definition of the composition and the proof of Theorem 2.9, we have
(i) $P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)$ for all $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$,
(ii) $P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a \in Y_{1}$ and for all $a_{2} b_{2} \in F_{2}$,
(iii) $P_{k} o D\left(\left(a_{1}, c\right)\left(b_{1}, c\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}(c)\right)$ for all $c \in Y_{2}$ and for all $a_{1} b_{1} \in F_{1}$.
Similarly, by using same arguments as in the proof of Theorem 2.9, we obtain

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}\left(a_{2}\right), P_{k} o C_{2}\left(b_{2}\right)\right)
$$

for all $a_{2}, b_{2} \in Y_{2}\left(a_{2} \neq b_{2}\right)$ and for all $a_{1} b_{1} \in F_{1}$. This completes the proof.
Definition 2.12. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. The union $G_{1} \cup G_{2}$ is defined as the pair (C, D) of m-polar fuzzy sets determined on the union of graphs G_{1}^{*} and G_{2}^{*} such that
(i) $P_{k} o C(a)= \begin{cases}P_{k} o C_{1}(a) & \text { if } a \in Y_{1} \text { and } a \notin Y_{2}, \\ P_{k} o C_{2}(a) & \text { if } a \in Y_{2} \text { and } a \notin Y_{1}, \\ \sup \left(P_{k} o C_{1}(a), P_{k} o C_{2}(a)\right) & \text { if } a \in Y_{1} \cap Y_{2} .\end{cases}$
(ii) $P_{k} o D(a b)= \begin{cases}P_{k} o D_{1}(a b) & \text { if } a b \in F_{1} \text { and } a b \notin F_{2}, \\ P_{k} o D_{2}(a b) & \text { if } a b \in F_{2} \text { and } a b \notin F_{1}, \\ \sup \left(P_{k} o D_{1}(a b), P_{k} o D_{2}(a b)\right) & \text { if } a b \in F_{1} \cap F_{2} .\end{cases}$

Theorem 2.13. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively, and $Y_{1} \cap Y_{2}=\emptyset$. Then G is the union of G_{1} and G_{2} if and only if each t-level graph G_{t} is the union of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$.

Proof. We show that $C_{t}=\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t}$ for each $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Let $a \in C_{t}$, then $a \in Y_{1} \backslash Y_{2}$ or $a \in Y_{2} \backslash Y_{1}$. If $a \in Y_{1} \backslash Y_{2}$, then $P_{k} o C_{1}(a)=$ $P_{k} o C(a) \geq \alpha_{k}, 1 \leq k \leq m$ which implies $a \in\left(C_{1}\right)_{t}$. Analogously $a \in Y_{2} \backslash Y_{1}$ implies $a \in\left(C_{2}\right)_{t}$. Therefore, $a \in\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t}$, and so $C_{t} \subseteq\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t}$. Now let $a \in\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t}$. Then $a \in\left(C_{1}\right)_{t}, a \notin\left(C_{2}\right)_{t}$ or $a \in\left(C_{2}\right)_{t}, a \notin\left(C_{1}\right)_{t}$. For the first case, we have $P_{k} o C_{1}(a)=P_{k} o C(a) \geq \alpha_{k}, 1 \leq k \leq m$ which implies $a \in C_{t}$. For the second case, we have $P_{k} o C_{2}(a)=P_{k} o C(a) \geq \alpha_{k}, 1 \leq k \leq m$. Hence $a \in C_{t}$. Consequently, $\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t} \subseteq C_{t}$.
To prove that $D_{t}=\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t}$, for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$, consider $a b \in D_{t}$. Then $a b \in F_{1} \backslash F_{2}$ or $a b \in F_{2} \backslash F_{1}$. For $a b \in F_{1} \backslash F_{2}$ we have $P_{k} o D_{1}(a b)=P_{k} o D(a b) \geq \alpha_{k}, 1 \leq k \leq m$. Thus $a b \in\left(D_{1}\right)_{t}$. Similarly $a b \in F_{2} \backslash F_{1}$ gives $a b \in\left(D_{2}\right)_{t}$. Therefore $D_{t} \subseteq\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t}$. If $a b \in$ $\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t}$, then $a b \in\left(D_{1}\right)_{t} \backslash\left(D_{2}\right)_{t}$ or $a b \in\left(D_{2}\right)_{t} \backslash\left(D_{1}\right)_{t}$. For the first case $P_{k} o D(a b)=P_{k} o D_{1}(a b) \geq \alpha_{k}, 1 \leq k \leq m$, hence $a b \in D_{t}$. In the second case we obtain $a b \in D_{t}$. Therefore, $\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t} \subseteq D_{t}$.
Conversely, let for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ the level graph $G_{t}=$ $\left(C_{t}, D_{t}\right)$ be the union of $\left(G_{1}\right)_{t}=\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(G_{2}\right)_{t}=\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$. Let $a \in Y_{1}, P_{k} o C_{1}(a)=\alpha_{k}, P_{k} o C(a)=\beta_{k}, 1 \leq k \leq m$, Then $a \in\left(C_{1}\right)_{t}$ where $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ and $a \in C_{t^{\prime}}$ where $t^{\prime} \in[0,1]^{m}, t^{\prime}=$ $\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)$. But by the hypothesis $a \in\left(C_{1}\right)_{t^{\prime}}$ and $a \in C_{t}$. Thus, $P_{k} o C_{1}(a) \geq$ $\beta_{k}, P_{k} o C(a) \geq \alpha_{k}, 1 \leq k \leq m$. Therefore, $P_{k} o C_{1}(a) \leq P_{k} o C(a)$ and $P_{k} o C_{1}(a) \geq$ $P_{k} o C(a)$. Hence $P_{k} o C_{1}(a)=P_{k} o C(a)$. Similarly, for every $a \in Y_{2}$, we get $P_{k} o C_{2}(a)=P_{k} o C(a)$. Thus we conclude that
(i) $\begin{cases}P_{k} o C(a)=P_{k} o C_{1}(a) & \text { if } a \in Y_{1}, \\ P_{k} o C(a)=P_{k} o C_{2}(a) & \text { if } a \in Y_{2} .\end{cases}$

By a similar method as above, we obtain
(ii) $\begin{cases}P_{k} o D(a b)=P_{k} o D_{1}(a b) & \text { if } a b \in F_{1}, \\ P_{k} o D(a b)=P_{k} o D_{2}(a b) & \text { if } a b \in F_{2} .\end{cases}$

This completes the proof.
Definition 2.14. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. The join $G_{1}+G_{2}$ is the pair (C, D) of m-polar fuzzy sets defined on the join $G_{1}^{*}+G_{2}^{*}$ such that
(i) $P_{k} o C(a)= \begin{cases}P_{k} o C_{1}(a) & \text { if } a \in Y_{1} \text { and } a \notin Y_{2}, \\ P_{k} o C_{2}(a) & \text { if } a \in Y_{2} \text { and } a \notin Y_{1}, \\ \sup \left(P_{k} o C_{1}(a), P_{k} o C_{2}(a)\right) & \text { if } a \in Y_{1} \cap Y_{2} .\end{cases}$
(ii) $P_{k} o D(a b)= \begin{cases}P_{k} o D_{1}(a b) & \text { if } a b \in F_{1} \text { and } a b \notin F_{2}, \\ P_{k} o D_{2}(a b) & \text { if } a b \in F_{2} \text { and } a b \notin F_{1}, \\ \sup \left(P_{k} o D_{1}(a b), P_{k} o D_{2}(a b)\right) & \text { if } a b \in F_{1} \cap F_{2}, \\ \inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right) & \text { if } a b \in F^{\prime} .\end{cases}$

Theorem 2.15. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively, and $Y_{1} \cap Y_{2}=\emptyset$. Then G is the join of G_{1} and G_{2} if and only if each t-level graph G_{t} is the join of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$.

Proof. By the definition of union and the proof of Theorem 2.13, $C_{t}=\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t}$, for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. We show that $D_{t}=\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t} \cup F_{t}^{\prime}$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$, where F_{t}^{\prime} is the set of all edges joining the vertices of $\left(C_{1}\right)_{t}$ and $\left(C_{2}\right)_{t}$.
From the proof of Theorem 2.13, it follows that $\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t} \subseteq D_{t}$. If $a b \in F_{t}^{\prime}$, then $P_{k} o C_{1}(a) \geq \alpha_{k}, P_{k} o C_{2}(b) \geq \alpha_{k}, 1 \leq k \leq m$. Hence

$$
P_{k} o D(a b)=\inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right) \geq \alpha_{k}
$$

It follows that $a b \in D_{t}$. Therefore, $\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t} \cup F_{t}^{\prime} \subseteq D_{t}$. For every $a b \in D_{t}$, if $a b \in F_{1} \cup F_{2}$, then $a b \in\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t}$, by the proof of Theorem 2.13. If $a \in Y_{1}$ and $b \in Y_{2}$, then

$$
\inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right)=P_{k} o D(a b) \geq \alpha_{k}
$$

so $a \in\left(C_{1}\right)_{t}$ and $b \in\left(C_{2}\right)_{t}$. Thus $a b \in F_{t}^{\prime}$. Therefore, $D_{t} \subseteq\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t} \cup F_{t}^{\prime}$. Conversely, let each level graph $G_{t}=\left(C_{t}, D_{t}\right)$ be the join of $\left(G_{1}\right)_{t}=\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(G_{2}\right)_{t}=\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$. From the proof of the Theorem 2.13, we have
(i) $\begin{cases}P_{k} o C(a)=P_{k} o C_{1}(a) & \text { if } a \in Y_{1}, \\ P_{k} o C(a)=P_{k} o C_{2}(a) & \text { if } a \in Y_{2} .\end{cases}$
(ii) $\begin{cases}P_{k} o D(a b)=P_{k} o D_{1}(a b) & \text { if } a b \in F_{1}, \\ P_{k} o D(a b)=P_{k} o D_{2}(a b) & \text { if } a b \in F_{2} .\end{cases}$
let $a \in Y_{1}, b \in Y_{2}, \inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right)=\alpha_{k}, P_{k} o D(a b)=\beta_{k}$. Then $a \in$ $\left(C_{1}\right)_{t}, b \in\left(C_{2}\right)_{t}$ where $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ and $a b \in D_{t^{\prime}}$ where $t^{\prime} \in$ $[0,1]^{m}, t^{\prime}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)$. It follows that $a b \in D_{t}, a \in\left(C_{1}\right)_{t^{\prime}}$ and $b \in\left(C_{2}\right)_{t^{\prime}}$. So, $P_{k} o D(a b) \geq \alpha_{k}, P_{k} o C_{1}(a) \geq \beta_{k}$ and $P_{k} o C_{2}(b) \geq \beta_{k}$. Therefore,

$$
P_{k} o D(a b) \geq \alpha_{k}=\inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right) \geq \beta_{k}=P_{k} o D(a b)
$$

Thus,

$$
P_{k} o D(a b)=\inf \left(P_{k} o C_{1}(a), P_{k} o C_{2}(b)\right)
$$

Definition 2.16. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. The cross product $G_{1} * G_{2}$ is the pair (C, D) of m-polar fuzzy sets defined on the cross product $G_{1}^{*} * G_{2}^{*}$ such that
(i) $P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)$ for all $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$,
(ii) $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a_{1} b_{1} \in$ F_{1} and for all $a_{2} b_{2} \in F_{2}$.

Theorem 2.17. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. Then $G=(C, D)$ is the cross product of G_{1} and G_{2} if and only if each level graph G_{t} is the cross product of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$.

Proof. By the definition of the Cartesian product and the proof of Theorem 2.9, we have $C_{t}=\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t}$, for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. We show that

$$
D_{t}=\left\{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \mid a_{1} b_{1} \in\left(D_{1}\right)_{t}, a_{2} b_{2} \in\left(D_{2}\right)_{t}\right\}
$$

for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. Infact, if $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t}$, then

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) \geq \alpha_{k}
$$

so $P_{k} o D_{1}\left(a_{1} b_{1}\right) \geq \alpha_{k}$ and $P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \alpha_{k}, 1 \leq k \leq m$. So, $a_{1} b_{1} \in\left(D_{1}\right)_{t}$ and $a_{2} b_{2} \in\left(D_{2}\right)_{t}$. Now if $a_{1} b_{1} \in\left(D_{1}\right)_{t}$ and $a_{2} b_{2} \in\left(D_{2}\right)_{t}$, then $P_{k} o D_{1}\left(a_{1} b_{1}\right) \geq \alpha_{k}$ and $P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \alpha_{k}, 1 \leq k \leq m$. It follows that

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) \geq \alpha_{k}
$$

Since $G=(C, D)$ is the cross product of $G_{1} * G_{2}$. Therefore, $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t}$. Conversely, let each t-level graph $G_{t}=\left(C_{t}, D_{t}\right)$ be the cross product of $\left(G_{1}\right)_{t}=$ $\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(G_{2}\right)_{t}=\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$. In view of the fact that the cross product $\left(C_{t}, D_{t}\right)$ has the same vertex set as the Cartesian product of $\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$, and by the proof of Theorem 2.9, we have

$$
P_{k} o C\left(\left(a_{1}, a_{2}\right)\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right) \text { for all }\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}
$$

Let $\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)=\alpha_{k}$ and $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\beta_{k}, 1 \leq$ $k \leq m$ for $a_{1} b_{1} \in F_{1}, a_{2} b_{2} \in F_{2}$. Then $P_{k} o D_{1}\left(a_{1} b_{1}\right) \geq \alpha_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq$ α_{k} and $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t^{\prime}}$ where $t^{\prime} \in[o, 1]^{m}, t^{\prime}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)$, hence $a_{1} b_{1} \in\left(D_{1}\right)_{t}, a_{2} b_{2} \in\left(D_{2}\right)_{t}$, where $t \in[o, 1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ and consequently $a_{1} b_{1} \in\left(D_{1}\right)_{t^{\prime}}, a_{2} b_{2} \in\left(D_{2}\right)_{t^{\prime}}$, since $D_{t^{\prime}}=\left\{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \mid a_{1} b_{1} \in\right.$ $\left.\left(D_{1}\right)_{t^{\prime}}, a_{2} b_{2} \in\left(D_{2}\right)_{t^{\prime}}\right\}$. It follows that $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in D_{t}, P_{k} o D_{1}\left(a_{1} b_{1}\right) \geq$ $\beta_{k}, P_{k} o D_{2}\left(a_{2} b_{2}\right) \geq \beta_{k}, 1 \leq k \leq m$. Therefore, $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\beta_{k} \leq$ $\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)=\alpha_{k} \leq P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)$. Hence

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) .
$$

This completes the proof.
Definition 2.18. Let G_{1} and G_{2} be m-polar fuzzy graphs. The lexicographic product $G_{1} \bullet G_{2}$ is the pair (C, D) of m-polar fuzzy sets defined on the lexicographic product $G_{1}^{*} \bullet G_{2}^{*}$ such that
(i) $P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)$ for all $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$,
(ii) $P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a \in Y_{1}$ and for all $a_{2} b_{2} \in F_{2}$,
(iii) $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a_{1} b_{1} \in$ F_{1} and for all $a_{2} b_{2} \in F_{2}$.

Theorem 2.19. Let G_{1} and G_{2} be m-polar fuzzy graphs. Then G is the lexicographic product of G_{1} and G_{2} if and only if $G_{t}=\left(G_{1}\right)_{t} \bullet\left(G_{2}\right)_{t}$ for all $t \in[0,1]^{m}, t=$ $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$.

Proof. By the definition of Cartesian product $G_{1} \times G_{2}$ and the proof of Theorem 2.9, we have $C_{t}=\left(C_{1}\right)_{t} \times\left(C_{2}\right)_{t}$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. We show that $D_{t}=F_{t} \cup F_{t}^{\prime}$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$, where $F_{t}=$ $\left\{\left(a, a_{2}\right)\left(a, b_{2}\right) \mid a \in Y_{1}, a_{2} b_{2} \in\left(D_{2}\right)_{t}\right\}$ is the subset of the edge set of the cross product $\left(G_{1}\right)_{t} \times\left(G_{2}\right)_{t}$, and $F_{t}^{\prime}=\left\{\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \mid a_{1} b_{1} \in\left(D_{1}\right)_{t}, a_{2} b_{2} \in\left(D_{2}\right)_{t}\right\}$ is the edge set of the cross product $\left(G_{1}\right)_{t} *\left(G_{2}\right)_{t}$. For every $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in$ $D_{t}, a_{1}=b_{1}, a_{2} b_{2} \in F_{2}$ or $a_{1} b_{1} \in F_{1}, a_{2} b_{2} \in F_{2}$. If $a_{1}=b_{1}, a_{2} b_{2} \in F_{2}$, then $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F_{t}$, by the definition of the Cartesian product and the proof of Theorem 2.9. If $a_{1} b_{1} \in F_{1}, a_{2} b_{2} \in F_{2}$, then $\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in F_{t}^{\prime}$, by the definition
of cross product and the proof of Theorem 2.17. Therefore, $D_{t} \subseteq F_{t} \cup F_{t}^{\prime}$. From the definition of the Cartesian product and the proof of Theorem 2.9, we conclude that $F_{t} \subseteq D_{t}$, and also from the definition of cross product and the proof of Theorem 2.17, we obtain $F_{t}^{\prime} \subseteq D_{t}$. Therefore, $F_{t} \cup F_{t}^{\prime} \subseteq D_{t}$.

Conversely, let $G_{t}=\left(C_{t}, D_{t}\right)=\left(G_{1}\right)_{t} \bullet\left(G_{2}\right)_{t}$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. We know that $\left(G_{1}\right)_{t} \bullet\left(G_{2}\right)_{t}$ has the same vertex set as the Cartesian product $\left(G_{1}\right)_{t} \times$ $\left(G_{2}\right)_{t}$. Now by the proof of Theorem 2.9, we have

$$
P_{k} o C\left(\left(a_{1}, a_{2}\right)\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right) \text { for all }\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}
$$

Let for $a \in Y_{1}$ and $a_{2} b_{2} \in F_{2}$ will be $\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)=\alpha_{k}$ and $P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\beta_{k}, 1 \leq k \leq m$. Then, in view of the definitions of the Cartesian product and lexicographic product, we have

$$
\begin{aligned}
\left(a, a_{2}\right)\left(a, b_{2}\right) \in\left(D_{1}\right)_{t} \bullet\left(D_{2}\right)_{t} & \Longleftrightarrow\left(a, a_{2}\right)\left(a, b_{2}\right) \in\left(D_{1}\right)_{t} \times\left(D_{2}\right)_{t} \\
\left(a, a_{2}\right)\left(a, b_{2}\right) \in\left(D_{1}\right)_{t^{\prime}} \bullet\left(D_{2}\right)_{t^{\prime}} & \Longleftrightarrow\left(a, a_{2}\right)\left(a, b_{2}\right) \in\left(D_{1}\right)_{t^{\prime}} \times\left(D_{2}\right)_{t^{\prime}}
\end{aligned}
$$

From this, by the same way as in the proof of Theorem 2.9, we conclude

$$
P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right) .
$$

Now let $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\alpha_{k}, \inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)=\beta_{k}, 1 \leq$ $k \leq m$ for $a_{1} b_{1} \in F_{1}$ and $a_{2} b_{2} \in F_{2}$. Then in view of the definitions of cross product and the lexicographic product, we have

$$
\begin{aligned}
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in\left(D_{1}\right)_{t} \bullet\left(D_{2}\right)_{t} & \Longleftrightarrow\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in\left(D_{1}\right)_{t} *\left(D_{2}\right)_{t} \\
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in\left(D_{1}\right)_{t^{\prime}} \bullet\left(D_{2}\right)_{t^{\prime}} & \Longleftrightarrow\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right) \in\left(D_{1}\right)_{t^{\prime}} *\left(D_{2}\right)_{t^{\prime}}
\end{aligned}
$$

By the same way as in the proof of Theorem 2.17, we can conclude

$$
P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right),
$$

which completes the proof.
Proposition 2.20. Let G_{1} and G_{2} be m-polar fuzzy graphs of $G_{1}^{*}=\left(Y_{1}, F_{1}\right)$ and $G_{2}^{*}=\left(Y_{2}, F_{2}\right)$, respectively, such that $Y_{1}=Y_{2}, C_{1}=C_{2}$ and $F_{1} \cap F_{2}=\emptyset$. Then $G=(C, D)$ is the union of G_{1} and G_{2} if and only if G_{t} is the union of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$.

Proof. Let $G=(C, D)$ be the union of m-polar fuzzy graphs G_{1} and G_{2}. Then by the definition of the union and the fact that $Y_{1}=Y_{2}, C_{1}=C_{2}$, we have $C=$ $C_{1}=C_{2}$, hence $C_{t}=\left(C_{1}\right)_{t} \cup\left(C_{2}\right)_{t}$. We now show that $D_{t}=\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t}$ for all $t \in[0,1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$. For every $a b \in\left(D_{1}\right)_{t}$ we have $P_{k} o D(a b)=$ $P_{k} o D_{1}(a b) \geq \alpha_{k}, 1 \leq k \leq m$, hence $a b \in D_{t}$. Therefore, $\left(D_{1}\right)_{t} \subseteq D_{t}$. Similarly we obtain $\left(D_{2}\right)_{t} \subseteq D_{t}$. Thus, $\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t} \subseteq D_{t}$. For every $a b \in D_{t}, a b \in F_{1}$ or $a b \in F_{2}$. If $a b \in F_{1}, P_{k} o D_{1}(a b)=P_{k} o D(a b) \geq \alpha_{k}, 1 \leq k \leq m$ and hence $a b \in\left(D_{1}\right)_{t}$. If $a b \in F_{2}$, we have $a b \in\left(D_{2}\right)_{t}$. Therefore, $D_{t} \subseteq\left(D_{1}\right)_{t} \cup\left(D_{2}\right)_{t}$.
Conversely, suppose that the t-level graph $G_{t}=\left(C_{t}, D_{t}\right)$ be the union of $\left(G_{1}\right)_{t}=$ $\left(\left(C_{1}\right)_{t},\left(D_{1}\right)_{t}\right)$ and $\left(G_{2}\right)_{t}=\left(\left(C_{2}\right)_{t},\left(D_{2}\right)_{t}\right)$. Let $P_{k} o C(a)=\alpha_{k}, P_{k} o C_{1}(a)=\beta_{k}, 1 \leq$ $k \leq m$ for some $a \in Y_{1}=Y_{2}$. Then $a \in C_{t}$ where $t \in[o, 1]^{m}, t=\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$ and $a \in\left(C_{1}\right)_{t^{\prime}}$ where $t^{\prime} \in[0,1]^{m}, t^{\prime}=\left(\beta_{1}, \beta_{2}, \cdots, \beta_{m}\right)$, so $a \in\left(C_{1}\right)_{t}$ and $a \in C_{t^{\prime}}$, because $C_{t}=\left(C_{1}\right)_{t}$ and $C_{t^{\prime}}=\left(C_{1}\right)_{t^{\prime}}$. It follows that $P_{k} o C_{1}(a) \geq \alpha_{k}$, and $P_{k} o C(a) \geq \beta_{k}, 1 \leq k \leq m$. Therefore, $P_{k} o C_{1}(a) \geq P_{k} o C(a)$ and $P_{k} o C(a) \geq$
$P_{k} o C_{1}(a)$. So, $P_{k} o C(a)=P_{k} o C_{1}(a)$. Since $C_{1}=C_{2}, Y_{1}=Y_{2}$, then $C=C_{1}=$ $C_{1} \cup C_{2}$.
By a similar method, we conclude that
(1) $\begin{cases}P_{k} o D(a b)=P_{k} o D_{1}(a b) & \text { if } a b \in F_{1}, \\ P_{k} o D(a b)=P_{k} o D_{2}(a b) & \text { if } a b \in F_{2} .\end{cases}$

This completes the proof.
Definition 2.21. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. The strong product $G_{1} \boxtimes G_{2}$ is the pair (C, D) of m-polar fuzzy sets defined on the strong product $G_{1}^{*} \boxtimes G_{2}^{*}$ such that
(i) $P_{k} o C\left(a_{1}, a_{2}\right)=\inf \left(P_{k} o C_{1}\left(a_{1}\right), P_{k} o C_{2}\left(a_{2}\right)\right)$ for all $\left(a_{1}, a_{2}\right) \in Y_{1} \times Y_{2}$,
(ii) $P_{k} o D\left(\left(a, a_{2}\right)\left(a, b_{2}\right)\right)=\inf \left(P_{k} o C_{1}(a), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a \in Y_{1}$ and for all $a_{2} b_{2} \in F_{2}$,
(iii) $P_{k} o D\left(\left(a_{1}, c\right)\left(b_{1}, c\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o C_{2}(c)\right)$ for all $c \in Y_{2}$ and for all $a_{1} b_{1} \in F_{1}$,
(iv) $P_{k} o D\left(\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\right)=\inf \left(P_{k} o D_{1}\left(a_{1} b_{1}\right), P_{k} o D_{2}\left(a_{2} b_{2}\right)\right)$ for all $a_{1} b_{1} \in$ F_{1} and for all $a_{2} b_{2} \in F_{2}$.

We state the following Theorem without its proof.
Theorem 2.22. Let G_{1} and G_{2} be m-polar fuzzy graphs of G_{1}^{*} and G_{2}^{*}, respectively. Then G is the strong product of G_{1} and G_{2} if and only if G_{t}, where $t \in[0,1]^{m}, t=$ $\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}\right)$, is the strong product of $\left(G_{1}\right)_{t}$ and $\left(G_{2}\right)_{t}$.

3. Conclusion

An m-polar fuzzy set is an extension of a bipolar fuzzy set. An m-polar fuzzy model is useful for multi-polar information, multi-agent, multi-attribute and multiobject network models which gives more precision, flexibility, and comparability to the system as compared to the classical, fuzzy and bipolar fuzzy models. In this research article, we have presented certain characterization of m-polar fuzzy graphs by level graphs. We have aim to extend our work to (1) single-valued neutrosophic soft graph structures, (2) single-valued neutrosophic rough fuzzy graph structures, (3) single-valued neutrosophic rough fuzzy soft graph structures, and (4) single-valued neutrosophic fuzzy soft graph structures.

References

[1] M. Akram, Bipolar fuzzy graphs, Information Sciences, 181, (2011) 5548 - 5564.
[2] M. Akram, Bipolar fuzzy graphs with applications, Knowledge-Based Systems, 9, (2013) $1-8$.
[3] M. Akram and A. Adeel, m-polar fuzzy labeling graphs with application, Mathematics in Computer Science, 10, (2016) 387 - 402.
[4] M. Akram and N. Waseem, Certain metrices in m - polar fuzzy graphs, New Mathematics and Natural Computation, 12, (2016)135-155.
[5] M. Akram, N. Waseem and W. A. Dudek, Certain types of edge m-polar fuzzy graphs, Iranian Journal of Fuzzy Systems, (2016) (in press).
[6] M. Akram and H.R Younas, Certain types of irregular m-polar fuzzy graphs, Journal of Applied Mathematics and Computing, DOI: 10.1007/s12190-015-0972-9, (2016).
[7] M. Akram and M. Sarwar, Novel application of m - polar fuzzy hypergraphs, Journal of intelligent and fuzzy systems, 31, (2016), DOI: 10.3233/JIFS-16859.
[8] P. Bhattacharya, Remark on fuzzy graphs, Pattern Recognition Letter 6, (1987) 297 - 302.
[9] J. Chen, S. Li, S. Ma and X. Wang, m-polar fuzzy sets: An extension of bipolar fuzzy sets, The Scientific World Journal, 2014, (2014), $1-8$.
[10] W. A. Dudek and A.A. Talebi, Operations on level graphs of bipolar fuzzy graphs, Buletinul Acad. Stiinte Republ. Moldova. Matematica, (2016) 107 - 124.
[11] G. Ghorai and M. Pal, Some properties of m-polar fuzzy graphs, Pacific Science Review A: Natural Science and Engineering, doi: 10.1016/j.psra.2016.06.004.
[12] A. Kaufmann, Introduction a la Theorie des Sous-emsembles Flous, Masson et Cie, 1 (1973).
[13] M. Kondo and W.A. Dudek, On the transfer principle in fuzzy theory, Mathware and Soft Computing, 12, (2005) $41-55$.
[14] J.N. Mordeson and P. Chang-Shyh, Operations on fuzzy graphs, Information Sciences, 79, (1994) $159-170$.
[15] L.A. Zadeh, (1971). Similarity relations and fuzzy orderings. Information Sciences, 3(2), 177-200.
[16] A. Rosenfeld, Fuzzy graphs, Fuzzy Sets and Their Applications, Academic Press, New York, (1975), $77-95$.
[17] L.A. Zadeh, Fuzzy sets, Information and Control, 8, (1965) $338-353$.
[18] L.A. Zadeh, Similarity relations and fuzzy orderings. Information Sciences, 3(2), (1971) $177-200$.
[19] W.-R. Zhang, Bipolar fuzzy sets and relations: a computational framework forcognitive modeling and multiagent decision analysis, Proc. of IEEE Conf., (1994) 305-309.

